posterior probability
“posterior probability” 是一个主要用于统计学和贝叶斯推断领域的术语,指的是在观察到某些证据后,某一假设为真的概率。该词组合由名词“posterior”和名词“probability”构成,因此没有形容词的不同含义。
词语辨析
在统计学中,“posterior probability”与“prior probability”(先验概率)形成对比。先验概率是指在观察证据之前对某一假设的信念,而后验概率则是在观察到证据之后更新的信念。
词汇扩充
- Prior probability - 先验概率
- Likelihood - 似然性
- Bayesian inference - 贝叶斯推断
- Statistical evidence - 统计证据
近义词
- Updated probability - 更新后的概率
- Conditional probability - 条件概率
反义词
- Prior probability - 先验概率
用法
在贝叶斯统计中,后验概率是通过贝叶斯定理计算的,通常用于模型更新和决策分析。
例句
-
The posterior probability reflects our updated beliefs after seeing new data.
后验概率反映了我们在看到新数据后更新的信念。
-
To calculate the posterior probability, we need to know the prior probability and the likelihood.
要计算后验概率,我们需要知道先验概率和似然性。
-
Bayesian methods allow us to update the posterior probability as more evidence becomes available.
贝叶斯方法允许我们在有更多证据时更新后验概率。
-
The posterior probability can change significantly with new observations.
新观察可能会显著改变后验概率。
-
In the context of decision-making, the posterior probability helps determine the best course of action.
在决策过程中,后验概率帮助确定最佳行动方案。
-
Understanding the posterior probability is crucial for effective risk management.
理解后验概率对于有效的风险管理至关重要。
-
Researchers often use posterior probability to assess the credibility of their hypotheses.
研究人员经常使用后验概率来评估他们假设的可信度。
-
The posterior probability can be represented graphically to visualize uncertainty.
后验概率可以通过图形表示来可视化不确定性。
-
In Bayesian analysis, the posterior probability is derived from the prior and the likelihood.
在贝叶斯分析中,后验概率是由先验和似然性推导而来的。
-
Computational methods are often used to approximate posterior probabilities in complex models.
在复杂模型中,计算方法常用于近似后验概率。
-
The posterior probability is essential for hypothesis testing and model comparison.
后验概率对于假设检验和模型比较至关重要。
-
As new evidence accumulates, the posterior probability evolves.
随着新证据的积累,后验概率也在不断演变。
-
Statisticians often discuss posterior probabilities in terms of their implications for real-world applications.
统计学家常常讨论后验概率及其对现实世界应用的影响。
-
The calculation of posterior probability involves both subjective and objective elements.
后验概率的计算涉及主观和客观两个方面。
-
The posterior probability can indicate the strength of evidence for a given hypothesis.
后验概率可以指示某一假设的证据强度。
-
Many machine learning algorithms rely on posterior probabilities for classification tasks.
许多机器学习算法依赖后验概率进行分类任务。
-
Understanding how to interpret posterior probabilities is vital for practitioners in statistics.
理解如何解释后验概率对统计学从业者至关重要。
-
The posterior probability helps to quantify uncertainty in predictions.
后验概率有助于量化预测中的不确定性。
-
In clinical trials, the posterior probability can guide treatment decisions.
在临床试验中,后验概率可以指导治疗决策。
-
The posterior probability is often used in Bayesian networks to represent relationships.
后验概率常用于贝叶斯网络中表示关系。