Dot Product
“Dot product”是一个数学和计算机科学领域的术语,通常用来描述两个向量之间的乘积。它既可以作为名词使用,也可以用于动词形式中。
词性分析
- 名词:dot product - 点积
- 动词:to dot product - 进行点积运算
词语辨析
在数学中,点积与叉积(cross product)有着不同的定义。点积主要用于计算两个向量之间的相似度,而叉积则用于计算两个向量所构成的面积。
词汇扩充
- Vector - 向量
- Magnitude - 大小
- Angle - 角度
近义词
- Inner product - 内积
反义词
- Cross product - 叉积
词典参考
- 柯林斯词典:dot product - The dot product of two vectors is a scalar quantity that is equal to the product of the magnitudes of the vectors and the cosine of the angle between them.
- 牛津词典:dot product - A mathematical operation that takes two equal-length sequences of numbers and returns a single number.
用法
在计算机图形学和物理学中,点积常用于判断两个向量的方向关系。
例句
-
The dot product of two vectors can be calculated using the formula a·b = |a||b|cosθ.
两个向量的点积可以使用公式 a·b = |a||b|cosθ 来计算。
-
To find the angle between the two vectors, you need to compute their dot product.
要找到两个向量之间的角度,你需要计算它们的点积。
-
The result of the dot product is a scalar, not a vector.
点积的结果是一个标量,而不是一个向量。
-
In physics, the dot product helps in calculating work done by a force.
在物理学中,点积有助于计算力所做的功。
-
When the dot product is zero, the vectors are orthogonal.
当点积为零时,向量是正交的。
-
The dot product is commutative, meaning a·b = b·a.
点积是可交换的,这意味着 a·b = b·a。
-
To understand how vectors interact, we often look at their dot product.
为了理解向量如何相互作用,我们常常查看它们的点积。
-
In machine learning, the dot product is essential for calculating similarities.
在机器学习中,点积对于计算相似性至关重要。
-
Using the dot product, we can determine the projection of one vector onto another.
通过使用点积,我们可以确定一个向量在另一个向量上的投影。
-
The calculation of the dot product involves multiplying the corresponding components of the vectors.
点积的计算涉及到乘以向量的对应分量。
-
In computer graphics, the dot product is used to determine lighting effects.
在计算机图形学中,点积用于确定光照效果。
-
The dot product can also be used in optimization algorithms.
点积也可以用于优化算法。
-
When working with matrices, the concept of dot product becomes even more complex.
在处理矩阵时,点积的概念变得更加复杂。
-
Understanding the dot product is crucial for advanced mathematics.
理解点积对高级数学至关重要。
-
When the vectors are parallel, the dot product is maximized.
当向量平行时,点积达到最大值。
-
The use of dot product extends beyond pure mathematics into applied fields.
点积的使用超越了纯数学,延伸到应用领域。
-
In programming, calculating the dot product can be done using simple loops.
在编程中,计算点积可以使用简单的循环。
-
The dot product is instrumental in machine learning algorithms.
点积在机器学习算法中起着重要作用。
-
To visualize the dot product, one can use geometric interpretations.
要可视化点积,可以使用几何解释。